summaryrefslogtreecommitdiff
path: root/rijndael.c
diff options
context:
space:
mode:
authorBen Lindstrom <mouring@eviladmin.org>2000-12-10 01:55:37 +0000
committerBen Lindstrom <mouring@eviladmin.org>2000-12-10 01:55:37 +0000
commitfa1b3d08421d263694d5fb3989d796a57d714f2a (patch)
treed3e8b0669d169e2c6c3ca8e3c30ddc5538ec6490 /rijndael.c
parenta688561ef4bf78651e60b112960b099c2bee1d90 (diff)
20001210
- (bal) OpenBSD CVS updates - markus@cvs.openbsd.org 2000/12/09 13:41:51 [cipher.c cipher.h rijndael.c rijndael.h rijndael_boxes.h] undo rijndael changes - markus@cvs.openbsd.org 2000/12/09 13:48:31 [rijndael.c] fix byte order bug w/o introducing new implementation - markus@cvs.openbsd.org 2000/12/09 14:08:27 [sftp-server.c] "" -> "." for realpath; from vinschen@redhat.com - markus@cvs.openbsd.org 2000/12/09 14:06:54 [ssh-agent.c] extern int optind; from stevesk@sweden.hp.com
Diffstat (limited to 'rijndael.c')
-rw-r--r--rijndael.c689
1 files changed, 395 insertions, 294 deletions
diff --git a/rijndael.c b/rijndael.c
index 92a39762..10c779b4 100644
--- a/rijndael.c
+++ b/rijndael.c
@@ -1,311 +1,412 @@
-/*
- * rijndael-alg-fst.c v2.4 April '2000
- * rijndael-alg-api.c v2.4 April '2000
- *
- * Optimised ANSI C code
- *
- * authors: v1.0: Antoon Bosselaers
- * v2.0: Vincent Rijmen, K.U.Leuven
- * v2.3: Paulo Barreto
- * v2.4: Vincent Rijmen, K.U.Leuven
- *
- * This code is placed in the public domain.
- */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <assert.h>
+/* $OpenBSD: rijndael.c,v 1.6 2000/12/09 13:48:31 markus Exp $ */
+
+/* This is an independent implementation of the encryption algorithm: */
+/* */
+/* RIJNDAEL by Joan Daemen and Vincent Rijmen */
+/* */
+/* which is a candidate algorithm in the Advanced Encryption Standard */
+/* programme of the US National Institute of Standards and Technology. */
+/* */
+/* Copyright in this implementation is held by Dr B R Gladman but I */
+/* hereby give permission for its free direct or derivative use subject */
+/* to acknowledgment of its origin and compliance with any conditions */
+/* that the originators of the algorithm place on its exploitation. */
+/* */
+/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */
+
+/* Timing data for Rijndael (rijndael.c)
+
+Algorithm: rijndael (rijndael.c)
+
+128 bit key:
+Key Setup: 305/1389 cycles (encrypt/decrypt)
+Encrypt: 374 cycles = 68.4 mbits/sec
+Decrypt: 352 cycles = 72.7 mbits/sec
+Mean: 363 cycles = 70.5 mbits/sec
+
+192 bit key:
+Key Setup: 277/1595 cycles (encrypt/decrypt)
+Encrypt: 439 cycles = 58.3 mbits/sec
+Decrypt: 425 cycles = 60.2 mbits/sec
+Mean: 432 cycles = 59.3 mbits/sec
+
+256 bit key:
+Key Setup: 374/1960 cycles (encrypt/decrypt)
+Encrypt: 502 cycles = 51.0 mbits/sec
+Decrypt: 498 cycles = 51.4 mbits/sec
+Mean: 500 cycles = 51.2 mbits/sec
+
+*/
#include "config.h"
#include "rijndael.h"
-#include "rijndael_boxes.h"
-int
-rijndael_keysched(u_int8_t k[RIJNDAEL_MAXKC][4],
- u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
+void gen_tabs __P((void));
+
+/* 3. Basic macros for speeding up generic operations */
+
+/* Circular rotate of 32 bit values */
+
+#define rotr(x,n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
+#define rotl(x,n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
+
+/* Invert byte order in a 32 bit variable */
+
+#define bswap(x) ((rotl(x, 8) & 0x00ff00ff) | (rotr(x, 8) & 0xff00ff00))
+
+/* Extract byte from a 32 bit quantity (little endian notation) */
+
+#define byte(x,n) ((u1byte)((x) >> (8 * n)))
+
+#if BYTE_ORDER != LITTLE_ENDIAN
+#define BYTE_SWAP
+#endif
+
+#ifdef BYTE_SWAP
+#define io_swap(x) bswap(x)
+#else
+#define io_swap(x) (x)
+#endif
+
+#define LARGE_TABLES
+
+u1byte pow_tab[256];
+u1byte log_tab[256];
+u1byte sbx_tab[256];
+u1byte isb_tab[256];
+u4byte rco_tab[ 10];
+u4byte ft_tab[4][256];
+u4byte it_tab[4][256];
+
+#ifdef LARGE_TABLES
+ u4byte fl_tab[4][256];
+ u4byte il_tab[4][256];
+#endif
+
+u4byte tab_gen = 0;
+
+#define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
+
+#define f_rn(bo, bi, n, k) \
+ bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
+ ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
+ ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
+ ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
+
+#define i_rn(bo, bi, n, k) \
+ bo[n] = it_tab[0][byte(bi[n],0)] ^ \
+ it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
+ it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
+ it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
+
+#ifdef LARGE_TABLES
+
+#define ls_box(x) \
+ ( fl_tab[0][byte(x, 0)] ^ \
+ fl_tab[1][byte(x, 1)] ^ \
+ fl_tab[2][byte(x, 2)] ^ \
+ fl_tab[3][byte(x, 3)] )
+
+#define f_rl(bo, bi, n, k) \
+ bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
+ fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
+ fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
+ fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
+
+#define i_rl(bo, bi, n, k) \
+ bo[n] = il_tab[0][byte(bi[n],0)] ^ \
+ il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
+ il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
+ il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
+
+#else
+
+#define ls_box(x) \
+ ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
+ ((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
+ ((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
+ ((u4byte)sbx_tab[byte(x, 3)] << 24)
+
+#define f_rl(bo, bi, n, k) \
+ bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \
+ rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \
+ rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
+ rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)
+
+#define i_rl(bo, bi, n, k) \
+ bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \
+ rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \
+ rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
+ rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)
+
+#endif
+
+void
+gen_tabs(void)
{
- /* Calculate the necessary round keys
- * The number of calculations depends on keyBits and blockBits
- */
- int j, r, t, rconpointer = 0;
- u_int8_t tk[RIJNDAEL_MAXKC][4];
- int KC = ROUNDS - 6;
-
- for (j = KC-1; j >= 0; j--) {
- *((u_int32_t*)tk[j]) = *((u_int32_t*)k[j]);
+ u4byte i, t;
+ u1byte p, q;
+
+ /* log and power tables for GF(2**8) finite field with */
+ /* 0x11b as modular polynomial - the simplest prmitive */
+ /* root is 0x11, used here to generate the tables */
+
+ for(i = 0,p = 1; i < 256; ++i) {
+ pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i;
+
+ p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
}
- r = 0;
- t = 0;
- /* copy values into round key array */
- for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
- for (; (j < KC) && (t < 4); j++, t++) {
- *((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]);
- }
- if (t == 4) {
- r++;
- t = 0;
- }
+
+ log_tab[1] = 0; p = 1;
+
+ for(i = 0; i < 10; ++i) {
+ rco_tab[i] = p;
+
+ p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
}
-
- while (r < ROUNDS + 1) { /* while not enough round key material calculated */
- /* calculate new values */
- tk[0][0] ^= S[tk[KC-1][1]];
- tk[0][1] ^= S[tk[KC-1][2]];
- tk[0][2] ^= S[tk[KC-1][3]];
- tk[0][3] ^= S[tk[KC-1][0]];
- tk[0][0] ^= rcon[rconpointer++];
-
- if (KC != 8) {
- for (j = 1; j < KC; j++) {
- *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
- }
- } else {
- for (j = 1; j < KC/2; j++) {
- *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
- }
- tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
- tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
- tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
- tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
- for (j = KC/2 + 1; j < KC; j++) {
- *((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
- }
- }
- /* copy values into round key array */
- for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
- for (; (j < KC) && (t < 4); j++, t++) {
- *((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]);
- }
- if (t == 4) {
- r++;
- t = 0;
- }
- }
- }
- return 0;
-}
-int
-rijndael_key_enc_to_dec(u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
-{
- int r;
- u_int8_t *w;
-
- for (r = 1; r < ROUNDS; r++) {
- w = W[r][0];
- *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
- ^ *((u_int32_t*)U2[w[1]])
- ^ *((u_int32_t*)U3[w[2]])
- ^ *((u_int32_t*)U4[w[3]]);
-
- w = W[r][1];
- *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
- ^ *((u_int32_t*)U2[w[1]])
- ^ *((u_int32_t*)U3[w[2]])
- ^ *((u_int32_t*)U4[w[3]]);
-
- w = W[r][2];
- *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
- ^ *((u_int32_t*)U2[w[1]])
- ^ *((u_int32_t*)U3[w[2]])
- ^ *((u_int32_t*)U4[w[3]]);
-
- w = W[r][3];
- *((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
- ^ *((u_int32_t*)U2[w[1]])
- ^ *((u_int32_t*)U3[w[2]])
- ^ *((u_int32_t*)U4[w[3]]);
+ /* note that the affine byte transformation matrix in */
+ /* rijndael specification is in big endian format with */
+ /* bit 0 as the most significant bit. In the remainder */
+ /* of the specification the bits are numbered from the */
+ /* least significant end of a byte. */
+
+ for(i = 0; i < 256; ++i) {
+ p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p;
+ q = (q >> 7) | (q << 1); p ^= q;
+ q = (q >> 7) | (q << 1); p ^= q;
+ q = (q >> 7) | (q << 1); p ^= q;
+ q = (q >> 7) | (q << 1); p ^= q ^ 0x63;
+ sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i;
}
- return 0;
-}
-
-/**
- * Encrypt a single block.
- */
-int
-rijndael_encrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16])
-{
- u_int8_t (*rk)[4][4] = key->keySched;
- int ROUNDS = key->ROUNDS;
- int r;
- u_int8_t temp[4][4];
-
- *((u_int32_t*)temp[0]) = *((u_int32_t*)(a )) ^ *((u_int32_t*)rk[0][0]);
- *((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[0][1]);
- *((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[0][2]);
- *((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[0][3]);
- *((u_int32_t*)(b )) = *((u_int32_t*)T1[temp[0][0]])
- ^ *((u_int32_t*)T2[temp[1][1]])
- ^ *((u_int32_t*)T3[temp[2][2]])
- ^ *((u_int32_t*)T4[temp[3][3]]);
- *((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]])
- ^ *((u_int32_t*)T2[temp[2][1]])
- ^ *((u_int32_t*)T3[temp[3][2]])
- ^ *((u_int32_t*)T4[temp[0][3]]);
- *((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]])
- ^ *((u_int32_t*)T2[temp[3][1]])
- ^ *((u_int32_t*)T3[temp[0][2]])
- ^ *((u_int32_t*)T4[temp[1][3]]);
- *((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]])
- ^ *((u_int32_t*)T2[temp[0][1]])
- ^ *((u_int32_t*)T3[temp[1][2]])
- ^ *((u_int32_t*)T4[temp[2][3]]);
- for (r = 1; r < ROUNDS-1; r++) {
- *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[r][0]);
- *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]);
- *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]);
- *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]);
-
- *((u_int32_t*)(b )) = *((u_int32_t*)T1[temp[0][0]])
- ^ *((u_int32_t*)T2[temp[1][1]])
- ^ *((u_int32_t*)T3[temp[2][2]])
- ^ *((u_int32_t*)T4[temp[3][3]]);
- *((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]])
- ^ *((u_int32_t*)T2[temp[2][1]])
- ^ *((u_int32_t*)T3[temp[3][2]])
- ^ *((u_int32_t*)T4[temp[0][3]]);
- *((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]])
- ^ *((u_int32_t*)T2[temp[3][1]])
- ^ *((u_int32_t*)T3[temp[0][2]])
- ^ *((u_int32_t*)T4[temp[1][3]]);
- *((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]])
- ^ *((u_int32_t*)T2[temp[0][1]])
- ^ *((u_int32_t*)T3[temp[1][2]])
- ^ *((u_int32_t*)T4[temp[2][3]]);
+
+ for(i = 0; i < 256; ++i) {
+ p = sbx_tab[i];
+
+#ifdef LARGE_TABLES
+
+ t = p; fl_tab[0][i] = t;
+ fl_tab[1][i] = rotl(t, 8);
+ fl_tab[2][i] = rotl(t, 16);
+ fl_tab[3][i] = rotl(t, 24);
+#endif
+ t = ((u4byte)ff_mult(2, p)) |
+ ((u4byte)p << 8) |
+ ((u4byte)p << 16) |
+ ((u4byte)ff_mult(3, p) << 24);
+
+ ft_tab[0][i] = t;
+ ft_tab[1][i] = rotl(t, 8);
+ ft_tab[2][i] = rotl(t, 16);
+ ft_tab[3][i] = rotl(t, 24);
+
+ p = isb_tab[i];
+
+#ifdef LARGE_TABLES
+
+ t = p; il_tab[0][i] = t;
+ il_tab[1][i] = rotl(t, 8);
+ il_tab[2][i] = rotl(t, 16);
+ il_tab[3][i] = rotl(t, 24);
+#endif
+ t = ((u4byte)ff_mult(14, p)) |
+ ((u4byte)ff_mult( 9, p) << 8) |
+ ((u4byte)ff_mult(13, p) << 16) |
+ ((u4byte)ff_mult(11, p) << 24);
+
+ it_tab[0][i] = t;
+ it_tab[1][i] = rotl(t, 8);
+ it_tab[2][i] = rotl(t, 16);
+ it_tab[3][i] = rotl(t, 24);
}
- /* last round is special */
- *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[ROUNDS-1][0]);
- *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[ROUNDS-1][1]);
- *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[ROUNDS-1][2]);
- *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[ROUNDS-1][3]);
- b[ 0] = T1[temp[0][0]][1];
- b[ 1] = T1[temp[1][1]][1];
- b[ 2] = T1[temp[2][2]][1];
- b[ 3] = T1[temp[3][3]][1];
- b[ 4] = T1[temp[1][0]][1];
- b[ 5] = T1[temp[2][1]][1];
- b[ 6] = T1[temp[3][2]][1];
- b[ 7] = T1[temp[0][3]][1];
- b[ 8] = T1[temp[2][0]][1];
- b[ 9] = T1[temp[3][1]][1];
- b[10] = T1[temp[0][2]][1];
- b[11] = T1[temp[1][3]][1];
- b[12] = T1[temp[3][0]][1];
- b[13] = T1[temp[0][1]][1];
- b[14] = T1[temp[1][2]][1];
- b[15] = T1[temp[2][3]][1];
- *((u_int32_t*)(b )) ^= *((u_int32_t*)rk[ROUNDS][0]);
- *((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[ROUNDS][1]);
- *((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[ROUNDS][2]);
- *((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[ROUNDS][3]);
-
- return 0;
+
+ tab_gen = 1;
}
-/**
- * Decrypt a single block.
- */
-int
-rijndael_decrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16])
-{
- u_int8_t (*rk)[4][4] = key->keySched;
- int ROUNDS = key->ROUNDS;
- int r;
- u_int8_t temp[4][4];
+#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
+
+#define imix_col(y,x) \
+ u = star_x(x); \
+ v = star_x(u); \
+ w = star_x(v); \
+ t = w ^ (x); \
+ (y) = u ^ v ^ w; \
+ (y) ^= rotr(u ^ t, 8) ^ \
+ rotr(v ^ t, 16) ^ \
+ rotr(t,24)
+
+/* initialise the key schedule from the user supplied key */
+
+#define loop4(i) \
+{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
+ t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
+ t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
+ t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \
+ t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \
+}
+
+#define loop6(i) \
+{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
+ t ^= e_key[6 * i]; e_key[6 * i + 6] = t; \
+ t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t; \
+ t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t; \
+ t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t; \
+ t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t; \
+ t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t; \
+}
+
+#define loop8(i) \
+{ t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
+ t ^= e_key[8 * i]; e_key[8 * i + 8] = t; \
+ t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t; \
+ t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t; \
+ t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t; \
+ t = e_key[8 * i + 4] ^ ls_box(t); \
+ e_key[8 * i + 12] = t; \
+ t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \
+ t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \
+ t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \
+}
+
+rijndael_ctx *
+rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
+ int encrypt)
+{
+ u4byte i, t, u, v, w;
+ u4byte *e_key = ctx->e_key;
+ u4byte *d_key = ctx->d_key;
+
+ ctx->decrypt = !encrypt;
+
+ if(!tab_gen)
+ gen_tabs();
+
+ ctx->k_len = (key_len + 31) / 32;
+
+ e_key[0] = io_swap(in_key[0]); e_key[1] = io_swap(in_key[1]);
+ e_key[2] = io_swap(in_key[2]); e_key[3] = io_swap(in_key[3]);
- *((u_int32_t*)temp[0]) = *((u_int32_t*)(a )) ^ *((u_int32_t*)rk[ROUNDS][0]);
- *((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[ROUNDS][1]);
- *((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[ROUNDS][2]);
- *((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[ROUNDS][3]);
-
- *((u_int32_t*)(b )) = *((u_int32_t*)T5[temp[0][0]])
- ^ *((u_int32_t*)T6[temp[3][1]])
- ^ *((u_int32_t*)T7[temp[2][2]])
- ^ *((u_int32_t*)T8[temp[1][3]]);
- *((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]])
- ^ *((u_int32_t*)T6[temp[0][1]])
- ^ *((u_int32_t*)T7[temp[3][2]])
- ^ *((u_int32_t*)T8[temp[2][3]]);
- *((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]])
- ^ *((u_int32_t*)T6[temp[1][1]])
- ^ *((u_int32_t*)T7[temp[0][2]])
- ^ *((u_int32_t*)T8[temp[3][3]]);
- *((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]])
- ^ *((u_int32_t*)T6[temp[2][1]])
- ^ *((u_int32_t*)T7[temp[1][2]])
- ^ *((u_int32_t*)T8[temp[0][3]]);
- for (r = ROUNDS-1; r > 1; r--) {
- *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[r][0]);
- *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]);
- *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]);
- *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]);
- *((u_int32_t*)(b )) = *((u_int32_t*)T5[temp[0][0]])
- ^ *((u_int32_t*)T6[temp[3][1]])
- ^ *((u_int32_t*)T7[temp[2][2]])
- ^ *((u_int32_t*)T8[temp[1][3]]);
- *((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]])
- ^ *((u_int32_t*)T6[temp[0][1]])
- ^ *((u_int32_t*)T7[temp[3][2]])
- ^ *((u_int32_t*)T8[temp[2][3]]);
- *((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]])
- ^ *((u_int32_t*)T6[temp[1][1]])
- ^ *((u_int32_t*)T7[temp[0][2]])
- ^ *((u_int32_t*)T8[temp[3][3]]);
- *((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]])
- ^ *((u_int32_t*)T6[temp[2][1]])
- ^ *((u_int32_t*)T7[temp[1][2]])
- ^ *((u_int32_t*)T8[temp[0][3]]);
+ switch(ctx->k_len) {
+ case 4: t = e_key[3];
+ for(i = 0; i < 10; ++i)
+ loop4(i);
+ break;
+
+ case 6: e_key[4] = io_swap(in_key[4]); t = e_key[5] = io_swap(in_key[5]);
+ for(i = 0; i < 8; ++i)
+ loop6(i);
+ break;
+
+ case 8: e_key[4] = io_swap(in_key[4]); e_key[5] = io_swap(in_key[5]);
+ e_key[6] = io_swap(in_key[6]); t = e_key[7] = io_swap(in_key[7]);
+ for(i = 0; i < 7; ++i)
+ loop8(i);
+ break;
+ }
+
+ if (!encrypt) {
+ d_key[0] = e_key[0]; d_key[1] = e_key[1];
+ d_key[2] = e_key[2]; d_key[3] = e_key[3];
+
+ for(i = 4; i < 4 * ctx->k_len + 24; ++i) {
+ imix_col(d_key[i], e_key[i]);
+ }
}
- /* last round is special */
- *((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[1][0]);
- *((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[1][1]);
- *((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[1][2]);
- *((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[1][3]);
- b[ 0] = S5[temp[0][0]];
- b[ 1] = S5[temp[3][1]];
- b[ 2] = S5[temp[2][2]];
- b[ 3] = S5[temp[1][3]];
- b[ 4] = S5[temp[1][0]];
- b[ 5] = S5[temp[0][1]];
- b[ 6] = S5[temp[3][2]];
- b[ 7] = S5[temp[2][3]];
- b[ 8] = S5[temp[2][0]];
- b[ 9] = S5[temp[1][1]];
- b[10] = S5[temp[0][2]];
- b[11] = S5[temp[3][3]];
- b[12] = S5[temp[3][0]];
- b[13] = S5[temp[2][1]];
- b[14] = S5[temp[1][2]];
- b[15] = S5[temp[0][3]];
- *((u_int32_t*)(b )) ^= *((u_int32_t*)rk[0][0]);
- *((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[0][1]);
- *((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[0][2]);
- *((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[0][3]);
-
- return 0;
+
+ return ctx;
}
-int
-rijndael_makekey(rijndael_key *key, int direction, int keyLen, u_int8_t *keyMaterial)
-{
- u_int8_t k[RIJNDAEL_MAXKC][4];
- int i;
-
- if (key == NULL)
- return -1;
- if ((direction != RIJNDAEL_ENCRYPT) && (direction != RIJNDAEL_DECRYPT))
- return -1;
- if ((keyLen != 128) && (keyLen != 192) && (keyLen != 256))
- return -1;
-
- key->ROUNDS = keyLen/32 + 6;
-
- /* initialize key schedule: */
- for (i = 0; i < keyLen/8; i++)
- k[i >> 2][i & 3] = (u_int8_t)keyMaterial[i];
-
- rijndael_keysched(k, key->keySched, key->ROUNDS);
- if (direction == RIJNDAEL_DECRYPT)
- rijndael_key_enc_to_dec(key->keySched, key->ROUNDS);
- return 0;
+/* encrypt a block of text */
+
+#define f_nround(bo, bi, k) \
+ f_rn(bo, bi, 0, k); \
+ f_rn(bo, bi, 1, k); \
+ f_rn(bo, bi, 2, k); \
+ f_rn(bo, bi, 3, k); \
+ k += 4
+
+#define f_lround(bo, bi, k) \
+ f_rl(bo, bi, 0, k); \
+ f_rl(bo, bi, 1, k); \
+ f_rl(bo, bi, 2, k); \
+ f_rl(bo, bi, 3, k)
+
+void
+rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
+{
+ u4byte k_len = ctx->k_len;
+ u4byte *e_key = ctx->e_key;
+ u4byte b0[4], b1[4], *kp;
+
+ b0[0] = io_swap(in_blk[0]) ^ e_key[0];
+ b0[1] = io_swap(in_blk[1]) ^ e_key[1];
+ b0[2] = io_swap(in_blk[2]) ^ e_key[2];
+ b0[3] = io_swap(in_blk[3]) ^ e_key[3];
+
+ kp = e_key + 4;
+
+ if(k_len > 6) {
+ f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+ }
+
+ if(k_len > 4) {
+ f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+ }
+
+ f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+ f_nround(b1, b0, kp); f_lround(b0, b1, kp);
+
+ out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
+ out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
+}
+
+/* decrypt a block of text */
+
+#define i_nround(bo, bi, k) \
+ i_rn(bo, bi, 0, k); \
+ i_rn(bo, bi, 1, k); \
+ i_rn(bo, bi, 2, k); \
+ i_rn(bo, bi, 3, k); \
+ k -= 4
+
+#define i_lround(bo, bi, k) \
+ i_rl(bo, bi, 0, k); \
+ i_rl(bo, bi, 1, k); \
+ i_rl(bo, bi, 2, k); \
+ i_rl(bo, bi, 3, k)
+
+void
+rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
+{
+ u4byte b0[4], b1[4], *kp;
+ u4byte k_len = ctx->k_len;
+ u4byte *e_key = ctx->e_key;
+ u4byte *d_key = ctx->d_key;
+
+ b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
+ b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
+ b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
+ b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
+
+ kp = d_key + 4 * (k_len + 5);
+
+ if(k_len > 6) {
+ i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+ }
+
+ if(k_len > 4) {
+ i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+ }
+
+ i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+ i_nround(b1, b0, kp); i_lround(b0, b1, kp);
+
+ out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
+ out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
}